A Logic For Inductive Probabilistic Reasoning
نویسنده
چکیده
Inductive probabilistic reasoning is understood as the application of inference patterns that use statistical background information to assign (subjective) probabilities to single events. The simplest such inference pattern is direct inference: from “70% of As are Bs” and “a is an A” infer that a is a B with probability 0.7. Direct inference is generalized by Jeffrey’s rule and the principle of cross-entropy minimization. To adequately formalize inductive probabilistic reasoning is an interesting topic for artificial intelligence, as an autonomous system acting in a complex environment may have to base its actions on a probabilistic model of its environment, and the probabilities needed to form this model can often be obtained by combining statistical background information with particular observations made, i.e. by inductive probabilistic reasoning. In this paper a formal framework for inductive probabilistic reasoning is developed: syntactically it consists of an extension of the language of firstorder predicate logic that allows to express statements about both statistical and subjective probabilities. Semantics for this representation language are developed that give rise to two distinct entailment relations: a relation |= that models strict, probabilistically valid, inferences, and a relation |≈ that models inductive probabilistic inferences. The inductive entailment relation is obtained by implementing cross-entropy minimization in a preferred model semantics. A main objective of our approach is to ensure that for both entailment relations complete proof systems exist. This is achieved by allowing probability distributions in our semantic models that use non-standard probability values. A number of results are presented that show that in several important aspects the resulting logic behaves just like a logic based on realvalued probabilities alone.
منابع مشابه
A Hybrid Approach to Inference in Probabilistic Non-Monotonic Logic Programming
We present a probabilistic inductive logic programming framework which integrates non-monotonic reasoning, probabilistic inference and parameter learning. In contrast to traditional approaches to probabilistic Answer Set Programming (ASP), our framework imposes only comparatively little restrictions on probabilistic logic programs in particular, it allows for ASP as well as FOL syntax, and for ...
متن کاملProbabilistic Inductive Logic Programming
Probabilistic inductive logic programming, sometimes also called statistical relational learning, addresses one of the central questions of artificial intelligence: the integration of probabilistic reasoning with first order logic representations and machine learning. A rich variety of different formalisms and learning techniques have been developed. In the present paper, we start from inductiv...
متن کاملAn integrated development environment for probabilistic relational reasoning
This paper presents KReator, a versatile integrated development environment for probabilistic inductive logic programming currently under development. The area of probabilistic inductive logic programming (or statistical relational learning) aims at applying probabilistic methods of inference and learning in relational or first-order representations of knowledge. In the past ten years the commu...
متن کاملLoglinear models for first-order probabilistic reasoning
Recent work on loglinear models in probabilistic constraint logic programming is applied to firstorder probabilistic reasoning. Probabilities are defined directly on the proofs of atomic formulae, and by marginalisation on the atomic formulae themselves. We use Stochastic Logic Programs (SLPs) composed of labelled and unlabelled definite clauses to define the proof probabilities. We have a cons...
متن کاملLoglinear models for rst-order probabilistic reasoning
Recent work on loglinear models in proba-bilistic constraint logic programming is applied to rst-order probabilistic reasoning. Probabilities are deened directly on the proofs of atomic formulae, and by marginal-isation on the atomic formulae themselves. We use Stochastic Logic Programs (SLPs) composed of labelled and unlabelled deenite clauses to deene the proof probabilities. We have a conser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Synthese
دوره 144 شماره
صفحات -
تاریخ انتشار 2005